本課程的目的是讓學生了解線性代數的基本概念及學得解決相關應用數學問題之邏輯推理能力。
The purpose of this course is to enable students to understand the mathematical principles of linear algebra and its applications to applied mathematical problems.
先修科目Prerequisites
無
No
教學方式Teaching Methods
講課
Lecturing
學生課後書面報告
After class written report
小組討論
Group discussion
學生上台報告
Oral presentation
習題練習
Exercise
評量方式Assessment
期中筆試
Midterm exam
期末筆試
Final exam
出席狀況
Class attendance
課堂參與與表現
Class involvement
參考書目Reference
1. David Cherney, Tom Denton, and Andrew Waldron, Linear Algebra, Edited by Katrina Glaeser, Rohit Thomas and Travis Scrimshaw, First Edition, Davis California, 2013.
2. Stephen Friedberg, Arnold Insel, and Lawrence Spence, Linear Algebra, Pearson, 4th edition (November 21, 2002).
教學進度Course Schedule
2016/07/18 1. 線性代數簡介 2. 高斯消去法 3. 基本列運算
1. What is Linear Algebra? 2. Gaussian Elimination 3. Elementary Row Operations
蔡豐聲(Feng-Sheng Tsai) 2016/07/19 1. LU分解 2. 向量空間
1. LU Factorization 2. Vector Spaces
蔡豐聲(Feng-Sheng Tsai) 2016/07/20 1. 線性變換 2. 線性變換與矩陣
1. Linear Transformations 2. Linear Transformations and Matrices
蔡豐聲(Feng-Sheng Tsai) 2016/07/21 1. 矩陣 2. 反矩陣 3. 行列式
1. Matrices 2. Inverse Matrix 3. Determinants
蔡豐聲(Feng-Sheng Tsai) 2016/07/22 1. 子空間與生成集 2. 線性獨立 3. 基底與維度
1. Subspaces and Spanning Sets 2. Linear Independence 3. Basis and Dimension
蔡豐聲(Feng-Sheng Tsai) 2016/07/23 1. 固有值與固有向量 2. 總測驗
1. Eigenvalues and Eigenvectors 2. Final Exam
蔡豐聲(Feng-Sheng Tsai)